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Figure 1. Our StyleGene method synthesizes kinship faces with resemblance to parents, exhibiting diversity and reasonable variations. The
first row is the input grandparents, and the second and third rows are their descendants generated by our method.

Abstract

High-fidelity kinship face synthesis has many potential
applications, such as kinship verification, missing child
identification, and social media analysis. However, it
is challenging to synthesize high-quality descendant faces
with genetic relations due to the lack of large-scale, high-
quality annotated kinship data. This paper proposes RFG
(Region-level Facial Gene) extraction framework to address
this issue. We propose to use IGE (Image-based Gene En-
coder), LGE (Latent-based Gene Encoder) and Gene De-
coder to learn the RFGs of a given face image, and the
relationships between RFGs and the latent space of Style-
GAN2. As cycle-like losses are designed to measure the L2

distances between the output of Gene Decoder and image
encoder, and that between the output of LGE and IGE, only
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face images are required to train our framework, i.e. no
paired kinship face data is required. Based upon the pro-
posed RFGs, a crossover and mutation module is further
designed to inherit the facial parts of parents. A Gene Pool
has also been used to introduce the variations into the mu-
tation of RFGs. The diversity of the faces of descendants
can thus be significantly increased. Qualitative, quantita-
tive, and subjective experiments on FIW, TSKinFace, and
FF-Databases clearly show that the quality and diversity of
kinship faces generated by our approach are much better
than the existing state-of-the-art methods.

1. Introduction
Humans can identify kinship through photographs based

on the resemblance between parents and children. Many
works have investigated this intrinsic relation in the fields



of kinship verification [9, 32, 42] and genetics [4, 5, 8, 19].
With the popularity of face synthesis and editing technol-
ogy in recent years, high-fidelity kinship face synthesis has
also attracted much attention. This task, aiming to synthe-
size the faces of descendants based on the appearance of
the parents, has many potential applications, such as find-
ing long-lost children, crime investigations, kinship verifi-
cation, and multimedia social applications.

In recent years, many efforts have been made to make
use of generative models [7,12, 15,16, 27,29,38, 43,45, 48]
for kinship face synthesis. These works can be catego-
rized into two paradigms: one-stage and two-stage. The
one-stage paradigm [12, 29, 38, 45] treats this problem as
an image-to-image translation task and trains a one-to-one
kinship face generator with paired data. However, these ap-
proaches can only produce low-resolution images and the
resultant images can be blurry and lack diversity. Further,
it would be quite difficult to obtain annotated kinship data.
By contrast, the two-stage paradigm [7, 15, 16, 27, 43, 48]
first extracts the genetic representation and assembles them
into children’s representation based on the parents’ faces.
To obtain genetic representation, existing methods try to
learn the inheritance and variation of facial appearances by
training deep neural networks [14, 27, 48] or via a knowl-
edge rule [7]. However, the learned genetic representation
is prone to overfitting due to the lack of high-quality kin-
ship annotated training data, resulting in a lack of diversity
in the generated children. In addition, these methods cannot
provide fine-grained attributes representation, and thus the
generated facial attributes lack interpretability.

In this paper, the facial genetic process is abstracted as
the exchange and mutation of the parents’ facial parts. We
propose an Image-based Gene Encoder (IGE) to construct
an independent representation for each facial part, called
a Region-level Facial Gene (RFG), which is used to con-
trol the synthesis of facial regions. We further simulate the
crossover and mutation process to assemble the RFGs of de-
scendants by using those of the parents, and our proposed
Gene Pool used in the mutation process can significantly
increase the diversity of the generated descendants. We use
the pre-trained StyleGAN2 [24] as the generator to synthe-
size high-fidelity faces. To achieve this, we use a Gene De-
coder to map RFGs to the W+ space of StyleGAN2. Since
IGE requires a facial parsing mask to generate the RFG, we
additionally train a Latent-based Gene Encoder (LGE) to
directly map the latent code of StyleGAN2 to RFGs. Thus,
facial parsing mask is not required for the RFG extraction
in the inference stage. The main contributions of this paper
are summarized as follows:

• We propose StyleGene to synthesize high-fidelity kin-
ship faces with controllable facial genetic regions, via
modeling the facial genetic relations based on the pro-
posed region-level facial genes.

• A novel genetic strategy is further introduced by sim-
ulating the crossover and mutation process to generate
the RFGs of descendants. We introduce a Gene Pool
into the mutation process to significantly increase the
diversity of the kinship face.

• We validate the effectiveness of our approach on sev-
eral benchmarks, demonstrating the superiority of our
StyleGene framework over other state-of-the-art meth-
ods, in terms of the quality and diversity of the gener-
ated kinship faces.

2. Related Work
2.1. Manipulation in Latent Space of StyleGAN

Generative Adversarial Networks (GANs) [17] have
been widely used in face generation [21, 33, 47] and edit-
ing [3, 13, 50]. In particular, the StyleGAN [22–24] has at-
tracted much attention due to its ability to synthesize high-
fidelity images. The StyleGAN generator first maps a la-
tent code z ∈ Z drawn from a normal distribution to an
intermediate latent code w ∈ W by a mapping function
to control image generation. Previous studies [20, 23, 36]
have demonstrated that W space has learned facial attribute
semantics and different layers of latent code control differ-
ent levels of image attributes. Based on this finding, many
works [6, 49] tried to invert the real image to W space for
semantic face editing. Some recent works [1, 2, 34] show
that the W+ space extended from the W space has lower
reconstruction errors. In this paper, we build a link between
our proposed RFGs and the W+ space of StyleGAN2 [24],
based on which we can achieve fine-grained control over
the synthesis of facial regions.

2.2. Kinship Face Synthesis

Kinship face synthesis aims to synthesize the face im-
ages of descendants given the images of parents. The chal-
lenge is to learn facial genetic relations with limited kin-
ship data. Table 1 summarizes the key differences between
ours and existing methods. Early works [14, 29, 48] design
the image level mapping from parents to children via super-
vised learning. However, limited by the quality and scale of
training data, the quality of images produced by these meth-
ods is usually low and prone to overfitting. Recent works

Table 1. Comparison between StyleGene and existing kinship face
synthesis methods. Nr denotes the number of controllable regions.

Methods Stages
Kinship

annotation
Image

resolution
Diversity

Controlling Nr

DNA-Net [14] two ✓ 128 Noise -
KinshipGAN [29] one ✓ 128 Noise -
ChildPredictor [48] two ✓ 128 Noise -
CDFS [45] one ✗ 256 Noise 5
StyleDNA [27] two ✓ 1024 Noise -
ChildGAN [7] two ✗ 1024 Interpolation 5
StyleGene (Ours) two ✗ 1024 Gene Pool 34
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Figure 2. The overall framework of our method. The image-based gene encoder Eimg learns to encode an independent RFG representation
for each facial region in the training stage. The gene decoder D maps RFGs g to the W+ space of StyleGAN2. For ease of use, our
latent-based gene encoder Elat maps latent codes w (obtained by an image inversion encoder Einv) to RFGs. In the inference stage, the
RFGs of both parents are first extracted using latent-based gene encoder, and then the RFGs of the descendants are assembled by crossover
and mutation module. The RFGs will be mapped back to the W+ space using gene decoder, and finally the high-fidelity face is generated
by a pre-trained StyleGAN2 generator G.

[7,27] based on StyleGAN can generate high-resolution im-
ages by interpolating in the latent space to control the gen-
eration of descendants. However, StyleDNA [27] learns the
mapping from parents to children in W space by supervised
learning, resulting in poor diversity due to overfitting. In ad-
dition, the inherited regions of children are uncontrollable.
ChildGAN [7] calculates the direction vectors of different
facial regions through annotated landmarks, and controls
the genetic regions by interpolation. However, due to at-
tribute entanglement in W space, finding the disentangled
direction vectors for small facial regions is difficult, which
limits the diversity of generated descendants.

To address this problem, our proposed StyleGene first
learns region-level facial genes (RFGs) to control the syn-
thesis of face regions. Then we further model kinship re-
lations based on RFGs, and leverage the pre-trained Style-
GAN2 generator to generate kinship face.

3. Method
In this section, we present our approach for high-fidelity

kinship face synthesis. Given a pair of parental face images,
xf and xm, our goal is to synthesize face images of their
descendants. We consider the facial genetic process as the
inheritance of facial parts from the father and mother.

The overview of the proposed framework is shown in
Fig. 2. In training, we build models to extract Region-
level Facial Genes (RFGs) from StyleGAN2 latent space
and then learn to map the disentangled genes representa-
tions back to the corresponding latent code. In particular,
we use an Image-based Gene Encoder (IGE) to directly
extract RFGs from the input face with region annotations.

Then a Gene Decoder is trained to map the obtained RFGs
to StyleGAN2 latent space. In addition, we use a GAN in-
version method to embed the same face to the W+ latent
space of StyleGAN2, and a Latent-based Gene Encoder
(LGE) is used to decompose the obtained latent code into
the corresponding RFGs.

In inference, we first use LGE to extract the RFGs of
parental faces, which are then used to obtain children’s
RFGs via crossover and mutation process. In addition, we
build a Gene Pool to simulate the genetic variations.

3.1. Region-level Facial Gene

In order to build facial genetic relations, a key step of
the proposed framework is to extract disentangled repre-
sentations of different face regions. We propose to train
IGE to directly extract RFGs by using fine-grained anno-
tated facial parts. We then use a Gene Decoder to transform
the obtained gene representations into the StyleGAN2 la-
tent space, from which we can reconstruct the original face
image.

Fine-grained Facial Parts Segmentation. We follow
DatasetGAN [46] pipeline to generate face images and cor-
responding segmentation masks. DatasetGAN trains a shal-
low decoder to achieve semantic segmentation based on the
features of StyleGAN by only using a few annotated data.
In this work, we adapt their approach to StyleGAN2 to pro-
duce pixel-level labels for N (N = 34) facial parts. These
fine-grained facial parts are then used to extract the corre-
sponding facial genes.

Image-based Gene Encoder. Fig. 4 shows the overview
of our IGE Eimg(·, ·). The goal of IGE is to learn region-
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Figure 3. The proposed Latent-based Gene Encoder (a) and Gene Decoder (b) architecture. We mainly use the Mixer layer [39] to deal
with the nonlinear transformation between high-dimensional vectors.

level facial gene representation gi for each facial part.
Given a face image x ∈ R3×512×512 and the correspond-

ing mask m = {m1, · · · ,mN}, we first transform x to a
feature map f(x) with 64 × 64 resolution by a series of
convolutional layers f . Then we extract the region feature
ri for the i-th face part by masking the obtained f(x) with
the corresponding binary mask mi, i.e., ri = f(x) ⊙ mi,
where ⊙ is an element-wise matrix multiplication operator.
Inspired by variational autoencoder [25], the posterior dis-
tribution for each region ri, mapped by a mapping function
hi, is modeled as a multivariate Gaussian distribution. It is
defined by

ĝi ∼ q(ĝi|ri) = N (ĝi; µ̂i, σ̂
2
i I), (1)

where µ̂i, σ̂i ∈ R18×512 are the multi-dimensional output
of hi(ri), representing the mean and standard deviation in
a diagonal matrix form, respectively. According to [25],
backpropagation is made differentiable via the reparameter-
ization trick, thus ĝi ∈ R18×512 can be sampled by

ĝi = µ̂i + σ̂i ⊙ ϵ, ϵ ∼ N (0, I), (2)

Finally, since we use N facial parts, all the RFG can be
denoted by ĝ = [ĝ1, · · · , ĝN ] ∈ R18×512×N . We simplify
this process denoted as ĝ = Eimg(x,m).
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Figure 4. The proposed Image-based Gene Encoder.

Latent-based Gene Encoder. As shown above, the pro-
posed IGE needs a face mask to extract the representations

for each facial region. To eliminate the dependency, we
train a LGE Elat(·) to directly extract RFGs from Style-
GAN2 latent space. As shown in Fig. 3(a), our LGE mainly
consists of a fully connected layer and several Mixer Lay-
ers [39], and maps the latent code w of a face image x to
the mean µi and standard deviation σi for each pre-defined
face region. This process can be formulated by

{µ,σ} = Elat (w) , (3)

where µ = [µ1, · · · ,µN ] and σ = [σ1, · · · ,σN ], and we
use a pre-trained GAN inversion model Einv(·) [40] as the
image encoder to get the latent code of a face image, i.e.
w = Einv(x). Then the region-level gene gi for the i-th
facial region can be sampled by

gi = µi + σi ⊙ ϵ, ϵ ∼ N (0, I). (4)

Finally, the RFGs of N facial parts can be denoted by g =
[g1, · · · , gN ].

Gene Decoder. We then use Gene Decoder D(·) to
map the region-level facial genes into the StyleGAN2 la-
tent space. Thus, we can reconstruct the face images from
the obtained gene representation. Specifically, the Gene De-
coder first processes the obtained RFGs with several Mixer
Layers [39]. Then all the regional features are concatenated
and further processed by a fully connected layer to obtain
the latent code ŵ ∈ R18×512. This process can be formu-
lated by

ŵ = D (ĝ) , (5)

where ĝ = [ĝ1, · · · , ĝN ] is the RFGs of N facial parts.
Loss Functions. As shown in Fig. 2(a), given an in-

put face image x, the corresponding region mask m and the
latent code w = Einv(x), we train our models by using
following loss functions.

To build a bridge between RFGs and latent space, we first
constrain the IGE Eimg and Gene Decoder D to reconstruct
the latent code of the input image. The latent reconstruct
loss is defined by

Llatent =∥ w − ŵ ∥2, (6)

where ŵ = D(Eimg(x,m)).
In addition, we use LGE Elat to remove the reliance on



face annotations. To decouple the latent code into the RFGs
obtained from IGE, the LGE is trained by

Lgene =

N∑
i=1

[
∥ µi − µ̂i ∥2 + ∥ σi − σ̂i ∥2

]
, (7)

where µ̂i and σ̂i are the outputs of Eimg(x,m) for the i-th
facial region, and µi,σi are the outputs of Elat(w) for the
i-th facial region.

All modules are trained jointly, and the full loss is de-
fined by

L = Llatent + λLgene, (8)

where λ is a hyperparameter, and we set it to be 1 in our
experiments.

Note that this training process does not rely on kinship
data, alleviating the problem of insufficient high-quality an-
notated kinship datasets.

3.2. Crossover & Mutation

As parent-offspring resemblance is often reflected in the
local area of the face appearance [5, 31]. Thus, after ob-
taining the region-level facial genes (RFGs), we simulate a
crossover process to generate the RFGs of descendants by
combining the RFGs of the parents. Additionally, we fur-
ther build a gene pool to simulate the gene mutation process,
which can significantly increase the diversity of synthesized
faces.

Gene Crossover. The gene crossover process aims to
generate the gene representation of the descendants with
a linear combination of the RFGs of the parents. In par-
ticular, given a pair of parental face images, xf and xm,
we first apply Image Encoder and LGE to obtain a set of
RFGs gf = [gf

1 , · · · , g
f
N ] and gm = [gm

1 , · · · , gm
N ] from

N facial parts, respectively. Then, the RFGs of descendants
gc = [gc

1, · · · , gc
N ] can be calculated by

gc
i = αig

f
i + βig

m
i , (9)

where αi and βi are randomly generated weights for each
region and αi + βi = 1 when mutation is not applied.

Fig. 5 shows four example faces generated using RFGs
inherited from their parents based on Eq. 9, when different
combinations of αi and βi are applied. The bigger value of
αi, the more similar to father for the i-th facial region. The
figure shows that our approach can precisely and indepen-
dently control the similarity of each facial region with their
parents, by setting different values of αi and βi.

Gene Mutation. In genetics, the gene pool is the set of
all genes of all individuals in a population [30]. For hu-
mans, all races share the same gene pool. We introduce
the gene pool concept to better simulate the genetic varia-
tion in facial appearances. We define the gene pool P as
the sets formed by grouping a large number of RFGs, i.e.
P = {g1, · · · , gp, · · · , gP }, where gp = [gp

1, · · · , g
p
N ]. As

shown in the supplementary materials, we divide the gene

MotherFather

Child Similarity 

Figure 5. Example of different weights used in crossover of RFGs.
While the redder regions look more similar to the father, and the
bluer regions look more similar to the mother.

pool into nine groups by age, two by gender, and seven by
race. Note that the RFG in the gene pool can independently
control different facial traits. And its phenotype is related
to the grouping condition.

Given a pair of parental face images and information
about generated descendants, such as age, gender, and race.
We first query the gene pool to extract a subset Pc ⊆ P
that satisfies the descendants’ information, which will be
used to simulate gene mutations for better diversity in the
descendants. Then we use Image Encoder and LGE to ex-
tract RFGs gf = [gf

1 , · · · , g
f
N ] and gm = [gm

1 , · · · , gm
N ]

of parents. For mutation, we randomly select η percent
of facial regions whose RFGs are sampled from the gene
pool. Given a gp sampled from Pc, a one-hot vector t =
{ti ∈ {0, 1}, i = 1, 2, · · · , N} is randomly generated to
denote whether the gc

i of descendant is fully copied from
gp
i (ti = 1), or not (ti = 0). When gc

i is inherited from
parents (ti = 0), we also introduce mutation by introduc-
ing gp into the crossover process defined in Eq. 9. Finally,
we can extend Eq. 9 as follows to obtain the RFGs of the
descendants gc = [g1

c , · · · , gN
c ]:

gc
i =

{
gp
i , ti = 1

αig
f
i + βig

m
i + γgp

i , ti = 0
, (10)

where γ is the intensity of mutation, αi and βi are randomly
generated weights and αi + βi = 1 − γ, gp

i = S(Pc) and
S(·) is the random sampling operator. Once the RFG of
descendant gc is generated, the learned Gene Decoder is
applied to map gc to the latent space of StyleGAN2, i.e.
wc = D(gc), wc ∈ R18×512, which is further processed
for face synthesis.

While the latent code in W+ latent space of StyleGAN2
usually consists of 18 layers, Richardson et al. [34] demon-
strate that the first 8 layers of the latent code mainly con-



tribute to the ID information of the synthesized faces, and
higher layers mainly control the skin color and microstruc-
ture of the synthesized faces. While the appearance of fa-
cial regions for descendants is mainly decided by gc, other
attributes like skin, hair color, image lighting, and back-
ground, can thus be inherited by inclusion of the latent
codes of parents. Therefore, we further fuse the latent codes
of parents wf and wm. We keep the first l layer of wc, and
the higher layers are fused from wf and wm. The final la-
tent code wc = [w1

c , · · · ,w18
c ] of the descendant can be

obtained by

wi
c =

1

2
(wi

f +wi
m), i ∈ {l + 1, · · · , 18}, (11)

4. Experiments

4.1. Experimental Settings

Datasets. Our training set consists of three parts, all
images of CelebAHQ [21], 50,000 faces sampled from
MS-Celeb-1M [18], and 10,000 faces generated by Style-
GAN2, to make the model adaptive to different image qual-
ities. CelebA-HQ is a high-quality face dataset consisting
of 30,000 aligned face images with 1024 × 1024 resolu-
tion. The MS-Celeb-1M is a large-scale face recognition
dataset containing about 10 million images, including many
noisy face images. We evaluate our model on the FIW
[35], TSKinFace [32], and FF-Database [48] datasets. FIW
dataset contains the faces of 1,000 families with 1,997 sets
of father-mother-child relations. The TSKinFace and FF-
Database datasets provide 1,015 and 3,744 sets of father-
mother-child kinship face images, respectively. We align
and crop the images in these two dataset to 256× 256. Our
Gene Pool is built based on the FFHQ [23] dataset, which
consists of 70,000 high-quality face images, and has a better
diversity among human races and ages.

Baselines. We compare our method against the state-
of-art kinship face synthesis baselines, i.e. DNA-Net [14],
ChildGAN [7], ChildPredictor [48], and StyleDNA [27].
Since the source codes of StyleDNA and ChildPredictor are
available, we compare our approach with them through all
of the evaluations. However, due to the unavailability of the
source codes, we can only visually compare the visual qual-
ity of the generated faces available in the papers of DNA-
Net and ChildGAN.

Training Details. We use AdamW [28] optimizer with
batch size of 32. The initialized learning rate is 0.001,
which is divided by 2 every 10 epochs, and we stop the
training at the 30th epoch.

4.2. Qualitative evaluation

Disentanglement of RFGs. Fig. 6 shows two examples
of facial region editing using our proposed RFG, where the
nose, eyes, jaw and lips of source faces shown in the first

column, are replaced sequentially by the corresponding re-
gions of reference faces shown in the first row. One can
observe from the examples that, when a certain region is
edited, all other facial regions are kept intact, which clearly
shows the disentanglement capability of our RFG.

+Nose +Eyes +Jaw +LipsSource

Reference

Figure 6. Disentangled editing of facial regions.

Effectiveness of Gene Pool. Based on the proposed idea
of RFG, our approach further introduce a gene pool to in-
crease the variations among the generated faces of descen-
dants. Given a couple of parents shown in the first row,
Fig. 7 shows the faces of five children generated by our
approach with/without the involvement of gene pool, to-
gether with that synthesized by StyleDNA and ChildPre-
dictor. While the faces generated by StyleDNA and Child-
Predictor (4th and 5th rows) all look very similar, that syn-
thesized by our approach are much more diverse and the in-
troduction of gene pool (1st row) can further increase vari-
ations among children.

102

Parents

Ours w/ 
Gene Pool

Ours w/o 
Gene Pool

StyleDNA

Child-
Predictor

Figure 7. Visual comparison of diversity with StyleDNA and
ChildPredictor. The first row shows the father and mother. The
next two rows are generated by our method with and without Gene
Pool. The last two rows are generated by StyleDNA [27] and
ChildPredictor [48], respectively.
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(a) FIW dataset
Real ChildFather Mother Ours ChildGANStyleDNA ChildPredictor DNA-Net Father Mother Real Child Ours StyleDNA ChildPredictor

(b) FF-Database
Figure 8. Comparison of children faces synthesized by StyleGene and baselines. Left most three columns of (a) FIW and (b) FF-Database
depict the father, mother, and real children, and right five or three columns depict the faces synthesized by ours, StyleDNA [27], ChildPre-
dictor [48], ChildGAN [7] and DNA-Net [14].

Comparison with the state-of-the-art. Fig. 8(a) and (b)
show qualitative results on FIW and FF-Database, respec-
tively. We first compare StyleGene with StyleDNA, DNA-
Net, ChildGAN, and ChildPredictor on FIW with low-
resolution facial images. Note that the results of ChildGAN
and DNA-Net are directly taken from their papers. As can
be seen, DNA-Net, ChildGAN, and ChildPredictor struggle
to yield high-quality facial images. Thanks to a powerful
generator, our method can generate high-fidelity faces with
hair. Though ChildGAN also uses the StyleGAN gener-
ator, its results are significantly affected by the quality of
the input. Note that all comparisons have considered the
facial information of parents. However, DNA-Net, Child-
Predictor, and StyleDNA model facial genetics by learning
the implicit mapping between parents and children, without
considering regional similarity, which significantly com-
promised the similarity between the generated faces and
their parents. Although ChildGAN considered parents’ fa-
cial features, the results were too similar to their parents.
Thanks to the region-level facial genes and the mutation in-
troduced by gene pool, our results can maintain the local
similarity to parents’ faces, and at the same time, present
reasonable global variations and diversity. When experi-
menting with faces of different races as shown in Fig. 8(b),
our approach can still well preserve the race similarity of
children with their parents.

4.3. Quantitative evaluation

Kinship Verification. We now use kinship verification
accuracy to assess whether a genetic relationship exists be-
tween the synthetic descendant and parents. Higher accu-
racy means more realistic synthetic descendants. We use
ArcFace pre-trained on the MS-Celeb-1M dataset as the
backbone to create a one-versus-one kinship classifier [42],
which is fine-tuned on the FF-Database training set. Then

we performed a cross-database evaluation.
Specifically, we randomly sample 100 families with one

kid from the FF-database test set, FIW, and TSKinFace
datasets, respectively, and different methods randomly gen-
erate 40 children for each family. We randomly sample
8,000 positive and 8,000 negative pairs for each method
from each dataset and calculate in Table 2 the kinship verifi-
cation accuracy. One can observe that our method achieves
substantially higher accuracy than StyleDNA and ChildPre-
dictor, i.e. as high as 81.74%, 80.38%, and 62.29% accu-
racies are achieved on TSKinFace, FF-Database, and FIW
datasets, respectively. The results suggest that the kinship
relations of faces generated by our approach are very close
to the real children.

Table 2. Kinship verification accuracy (%) on the TSKinFace [32],
FF-Database [48], and FIW [35] dataset.

Methods TSKinFace FF-Database FIW

StyleDNA [27] 53.15 55.11 49.47
ChildPredictor [48] 58.24 59.62 51.81
StyleGene (Ours) 81.74 80.38 62.29

Diversity Evaluation. We used the LPIPS [44] metric to
measure the diversity of synthetic descendants, which cal-
culates the L1 distance between pairs of image features ex-
tracted by AlexNet [26] pre-trained on the ImageNet [10]
dataset. We use the same test data of kinship verifica-
tion. First, we calculated the distance among the 40 syn-
thesized descendants for each family. Then we take the av-
erage of 100 families as the LPIPS score and list them in
Table 3. As shown in the table, our method achieves the
highest LPIPS across all three datasets, i.e. 0.3270, 0.3418,
and 0.3279 LPIPS on TSKinFace, FF-Database, and FIW
datasets are achieved, which is significantly higher than that
of StyleDNA and ChildPredictor.

Distribution of Synthesized Children. We are now try-



Table 3. Quantitative comparison of the diversity of the generated
descendants. ∗ means we cropped the face i.e. no hair.

Methods TSKinFace FF-Database FIW

StyleDNA∗ [27] 0.0756 0.0763 0.0736
ChildPredictor [48] 0.1697 0.1723 0.1750
StyleGene (Ours)∗ 0.1748 0.1735 0.1740
StyleDNA [27] 0.1559 0.1542 0.1573
StyleGene (Ours) 0.3270 0.3418 0.3279

ing to model the distribution of the children synthesized
by different approaches, and compare them with that of
real children. Specifically, we randomly sample 50 fami-
lies from the TSKinFace dataset, each consisting of a fa-
ther, mother, son, and daughter. Based on the given parents,
we also applied different synthesis methods to generate two
children, i.e. a son and a daughter, for each family. After
facial features are extracted using ArcFace [11] and reduced
to one dimension using t-SNE [41], Kernel Density Estima-
tion (KDE) [37] is further applied to estimate the features’
probability density function. Fig. 9 shows the distribution
of the 100 real children (blue) and that of children gener-
ated by different approaches. As can be seen, the distribu-
tion of faces generated by our approach (red) overlaps most
with the real children (blue). In contrast, the distributions
of faces synthesized by StyleDNA (black) and ChildPredic-
tor (yellow) are located on both sides of the real ones. The
distribution for StyleDNA even looks like a mixture of two
Gaussian distributions, which is significantly different from
that of real children.

StyleGene    
StyleDNA    
ChildPredictor
Real child    

Figure 9. Distribution of real children (blue) and children gener-
ated using StyleDNA (black), ChildPredictor (yellow), and ours
(red). Best viewed in color.

User Study. To further demonstrate the effectiveness of
the proposed method, we conducted a user study involv-
ing 59 participants. The faces of children generated by our
StyleGene, StyleDNA and ChildPredictor based on 20 par-
ents, are present to each of the 59 participants, who are
asked to rank the quality of the faces, in terms of realness
and the similarity with given parents. In total 1,180 (59×20)
votes are received for each of the three approaches and the
average rankings are listed in Table 4. As shown in the table,
our StyleGene receives the highest rank among the com-

pared approaches, which suggests that the faces of children
synthesized by our approach are the best, in terms of both
quality and similarity with parents.

Table 4. The rank of different approaches in user study.

ChildPredictor StyleDNA StyleGene (Ours)

Avg. rank 2.46 2.22 1.32

4.4. Ablation study

In this section, we perform ablation studies on the ef-
fectiveness of LGE, IGE and GP, in terms of kinship ver-
ification accuracy (ACC) and diversity (LPIPS) using FF-
database with the same configuration as in Section 4.3. As
shown in Table 5, the integration of IGE (2nd row) can im-
prove both ACC and LPIPS of the synthesized descendant.
As expected, the use of GP (3rd row) increases the diversity
of synthesized faces. When both IGE and GP are integrated
with LGE (4th row), the diversity can be significantly in-
creased to 0.1735, with a comparable ACC (80.38%).

Table 5. Ablation study on FF-Database.

LGE IGE GP ACC (%) LPIPS

1 ✓ ✗ ✗ 79.19 0.0625
2 ✓ ✓ ✗ 79.66 0.0646
3 ✓ ✗ ✓ 80.21 0.0839
4 ✓ ✓ ✓ 80.38 0.1735

4.5. Parameter sensitivity

We test different values of η, γ, and l to see how the
performance of synthesis varies. Due to the page limit, de-
tails about the results of different parameters are presented
in supplementary. In our experiments, we choose η = 40%,
γ = 0.47, and l = 8 to achieve a balance between the di-
versity and fidelity of the generated faces.

5. Conclusion
In this paper, we have proposed StyleGene, to extract

RFGs (Region-level Facial Genes) for kinship face synthe-
sis. While crossover and mutation of RFGs are proposed
to model the facial genetic process, Gene Pool is further
designed to increase the diversity among generated faces.
Quantitative, qualitative, and subjective experimental re-
sults show that the realness, similarity with parents, and di-
versity of kinship faces generated by our approach are much
better than existing state-of-the-art methods.
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