
Taming System Dynamics on Resource
Optimization for Data Processing Workflows:

A Probabilistic Approach
Amelie Chi Zhou , Weilin Xue, Yao Xiao , Bingsheng He,

Shadi Ibrahim ,Member, IEEE, and Reynold Cheng ,Member, IEEE

Abstract—In many data-intensive applications, workflow is often used as an important model for organizing data processing tasks and

resource provisioning is an important and challenging problem for improving the performance of workflows. Recently, system variations

in the cloud and large-scale clusters, such as those in I/O and network performances and failure events, have been observed to greatly

affect the performance of workflows. Traditional resource provisioning methods, which overlook these variations, can lead to

suboptimal resource provisioning results. In this article, we provide a general solution for workflow performance optimizations

considering system variations. Specifically, we model system dynamics as time-dependent random variables and take their probability

distributions as optimization input. Despite its effectiveness, this solution involves heavy computation overhead. Thus, we propose

three pruning techniques to simplify workflow structure and reduce the probability evaluation overhead. We implement our techniques

in a runtime library, which allows users to incorporate efficient probabilistic optimization into existing resource provisioning methods.

Experiments show that probabilistic solutions can improve the performance by up to 65 percent compared to state-of-the-art static

solutions, and our pruning techniques can greatly reduce the overhead of our probabilistic approach.

Index Terms—Cloud dynamics, resource optimization, data processing workflows

Ç

1 INTRODUCTION

IN many data-intensive applications, data processing jobs
are often modeled as workflows, which are sets of tasks

connected according to their data and computation depen-
dencies. For example, Montage workflow [1] is an astron-
omy-related big data application, which processes sky
mosaics data in the scale of hundreds of GBs. Large compa-
nies such as Facebook, Yahoo, and Google frequently exe-
cute ad-hoc queries and periodic batch jobs over petabyte-
scale data based on MapReduce (MR) workflows [2]. Those
data-intensive workflows are usually executed in large scale
systems (e.g., high performance computers for scientific
applications and public/private clouds for industrial appli-
cations) and resource provisioning, which determines the size
and type of resources to execute workflow tasks, is an
important optimization factor to the performance of work-
flows. However, due to the complex workflow structures,

resource provisioning has been a challenging problem for
data processing workflows, and has been widely studied by
existing work [3], [4], [5].

In many large-scale systems, variations have become the
norm rather than the exception [6], [7]. The variations can be
caused by both hardware and software reasons. For exam-
ple, in supercomputer architectures, the variation in power
and temperature of the chips can cause up to 16 percent
performance variation between processors [8]. In cloud envi-
ronments, the network and I/O performances also show sig-
nificant variations due to the resource sharing between
multiple users [7]. Job failures have been demonstrated to be
variant and follow different kinds of probability distribu-
tions for different systems (e.g., HPC, cluster and cloud) [6].
These variations, which have been ignored by most existing
optimization methods, raise new challenges to the resource
provisioning problem of workflows. In this paper, we dis-
cuss the resource provisioning problem of workflows in the
cloud as an example, aiming at proposing a general solution
to incorporating system variations for performance optimi-
zation problems of workflows. Although the discussion is
focused on the cloud, we conjecture that the observations
can shed light on other systems such as shared clusters (see
Section 7).

Why Consider Variations? Cloud providers often provide
various types of instances (i.e., VMs) for users to select the
most appropriate resources to execute workflow tasks. Most
existing resource provisioningmethods assume that the execu-
tion time of each task is static on a given type of VMs. How-
ever, this assumption does not hold in the cloud, where cloud
dynamics, such as variations of I/Oandnetwork performances,
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can result in major performance variation [7], [9] to large-scale
data processing workflows. Traditional resource provisioning
methods, which overlook these variance values, can lead to
suboptimal resource provisioning results [8], [10]. We ana-
lyzed several common resource provisioning problems for
workflows, and observed that the performance optimization
goal is usually nonlinearly related to the cloud dynamics in I/O
and network performance. Thus, traditional static optimiza-
tions (e.g., taking the average or expectedperformance as optimi-
zation input) can lead to suboptimal or even infeasible
solutions. For example, to optimize workflow performance
using checkpointing, we have to consider system failure
dynamics (more details in Section 6). Using the production
trace from Google Cloud [11] and performance trace from
Amazon EC2, we found that a dynamics-aware method can
obtain better performance optimization results than static
method [6] for over 60 percent of the time.

Why Probabilistic Method? Existing studies propose various
methods such as dynamic scheduling [5], [12] and stochastic
modeling [13], [14] to address resource provisioning problems
considering cloud dynamics. However, they either rely on accu-
rate cloud performance estimation at runtime (e.g., dynamic
scheduling) or involve complicated modeling and analysis and
thus are hard to be generalized (e.g., stochastic methods).

In this paper, we study a systematic and effective way of
incorporating cloud dynamics into resource optimization
for workflows. We propose to model cloud dynamics as
random variables and take their probability distributions as
optimization input to formulate resource provisioning prob-
lems. This design has two main advantages. First, it enables
probabilistic analysis [15] required by many problems with
system randomness, such as designing fault-tolerant sched-
uling techniques for workflows in case of random system
failures [16]. Second, it enables the derivation of probabilis-
tic bounds [17] to guarantee the worst-case performance of
applications, while the existing static methods only guaran-
tee the average performance.

With the probabilistic representation of cloud dynamics,
traditional static resource provisioning methods cannot be
useddirectly. Themain challenge is that using probability dis-
tributions as optimization input to resource provisioning
problems can lead to a significantly high computation over-
head due to the costly distribution calculations and complex
structures of data processing workflows. There exist some
optimization techniques to improve the efficiency of probabi-
listic methods in other fields, such as efficient query evalua-
tions in probabilistic databases [18] and efficient probabilistic
analysis in hardware design [15]. However, none of them has
considered the special features of workflow structure and
resource provisioning problems, which can help to more effi-
ciently reduce the overhead of probabilistic resource provi-
sioning ofworkflows.

Contributions. In this paper, we propose Prob to efficiently
incorporate cloud dynamics into resource optimization for
workflows. In Prob, we propose three simple yet effective
pruning techniques to reduce the overhead of probabilistic
optimizations. These techniques are designed based on the
features of workflow structures and resource provisioning
problems. First, we identify that calculating the makespan of
a workflow is a common operation in many resource provi-
sioning problems of workflows. Thus, we propose pre-

processing pruning to reduce the overhead of this important
calculation and hence reduce the overhead of probabilistic
optimizations. Second, we propose workflow-specific optimi-
zations using existing workflow transformation techniques to
reduce the overhead of evaluating one instance configuration
solution. Third, we propose a partial solution evaluation
method and adopt an existing pruning technique [18] to
reduce the overhead of comparingmultiple solutions.

We develop a runtime library that includes all the prun-
ing techniques of Prob. Users can implement their existing
resource provisioning methods using Prob APIs to incorpo-
rate probabilistic optimizations, in order to improve both
the effectiveness and efficiency of the existing methods. We
introduce budget-constrained scheduling and fault toler-
ance problem as two examples of resource optimization
problems for workflows. We compare Prob with state-of-
the-art static algorithms using real-world workflows on two
real cloud platforms and with simulations. Experimental
results demonstrate the effectiveness and efficiency of our
probabilistic approach. Specifically, Prob improves work-
flow performance by 2–65 percent compared to the static
algorithms for the budget-constrained scheduling problem
and by 5–30 percent for the fault tolerance problem. The
pruning techniques of Prob bring significant reduction to
the overhead of our probabilistic approach (e.g., up to 567x
speedup to the Monte Carlo (MC) method). As a result, it
takes less than one second to complete the optimizations for
a Montage workflow with more than 10,000 tasks.

Goals and Non-Goals. The primary goal for Prob, and the
focus of this paper, is proposing an efficient interface for
existing resource provisioning methods to easily incorpo-
rate probabilistic optimizations, rather than proposing a
new resource provisioning technique. In order to show the
generality of Prob, we use two common resource provision-
ing problems of workflows as use cases and discuss how
Prob can improve the effectiveness of the existing solutions
to both use cases.

The rest of this paper is organized as follows. Section 2
presents the background and preliminaries. Section 3 shows
the effectiveness of probabilistic optimizations. Section 4
introduces pruning techniques for reducing the optimiza-
tion overhead of Prob. We introduce the implementation
details of Prob in Section 5 and extend the cloud dynamics
in Section 6. We evaluate the proposed techniques in Sec-
tion 7. We summarize related work in Section 8 and con-
clude this paper in Section 9.

2 PRELIMINARIES

2.1 Data Processing Workflows

A data processing workflow (a job) can be described as a
directed acyclic graph (DAG) [19]. A vertex in the DAG rep-
resents a task in the workflow while an edge represents the
data dependency between two tasks. A task in a workflow
performs certain data transformation to its input data. We
adopt an existing approach [20] widely used for data-inten-
sive task execution time estimation, and calculate the task
execution time as the sum of the CPU, I/O and network
time. We define a virtual entry vertex and a virtual exit ver-
tex in a workflow. The entry vertex does nothing but stages
input data while the exit vertex saves output results.
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Resource provisioning for a workflow in the cloud decides
the number and types of cloud instances required for execut-
ing the workflow. Performance is an important optimization
metric for resource provisioning of data-intensive workflows
in the cloud. The performance (i.e., makespan) of a workflow
is usually highly affected by the resource provisioning deci-
sions. Many resource provisioning methods have been pro-
posed to optimize either the performance of workflows in the
cloud [3], [6] or the monetary cost/energy efficiency of work-
flowswith performance constraints [4], [5], [21].

2.2 Cloud Dynamics Terminology

The cloud has many dynamic factors causing system varia-
tions, such as the performance dynamics in I/O and net-
work and system failure dynamics, which are common in
the cloud and decisive to the execution of data processing
workflows. Also, as will be shown in Section 2.3, the two
types of dynamics are correlated, which further complicates
the performance optimizations of workflows.

Using I/O (network) performance dynamics as an exam-
ple, we formally define cloud dynamics as below.

Definition 1. We view the I/O (network) bandwidth assigned to
a running task as a random variableX. Then, the I/O (network)
bandwidth dynamics can be described with a probability distri-
bution fXðxÞ, which represents the probability ofX ¼ x.

The above definition greatly changes the formulation and
the way of solving resource provisioning problems for work-
flows in the cloud. Consider an example of calculating the
expected I/O time t of a task, given that the I/O data size is d.
With the static definition of I/O bandwidth as a scalar value b
(b ¼P

x x � fXðxÞ), we have t ¼ d
b . With our dynamic defini-

tion on I/O bandwidth, the value of t is also dynamic. Define
the I/O time of the task as a random variable (r.v.) T , then the
probability distribution of T can be calculated as fT ðtÞ ¼
fXðdtÞ, where fXðxÞ is the probability distribution of I/O band-
width. The expected value of T is

P
x
d
x � fXðxÞ and can be dif-

ferent from the result of the static method (i.e., dP
x
x�fXðxÞ

). We

will show the effectiveness of the probabilistic model on
improving resource provisioning resultswith case studies.

2.3 Features of Cloud Dynamics

Our previous study on the I/O and network performances of
Amazon EC2 instances has revealed the spatial and temporal
features of cloud dynamics [22]. Specifically, we have demon-
strated that 1) the probability distributions of performances of
different types of instances usually have similar patterns with
different parameters and 2) the probability distributions of the
cloud performance are stable within a short time period. To
illustrate these features,we present the sequential I/Oand net-
work performances of Windows Azure instances measured
during seven days in April 2018 in Fig. 1. More details about
the measurements can be found in Section 5. Fig. 1a shows
that, the I/O performances of the four types of instances have
unignorable variations and the variations follow similar distri-
butions. Fig. 1b shows the distributions of network perfor-
mance between two A4 instances during different time of the
measurement. It is clear that networkperformance distribution
in a short period of time (e.g., one day) is more stable than that
in a longer period (e.g., five days). These observations mean

that it is reasonable and also feasible to model and predict
cloudperformance using probabilistic distributions.

In large-scale cloud environments, failures have become
the norm rather than the exception, and thus are decisive to
the performance optimizations of cloud applications. Failure
dynamics is usually more complicated than performance
dynamics, due to the different causes of failure events. For
example, system failures can be caused by hardware and soft-
ware reasons such as failing motherboard and bad code. For
cloud environments, the dynamic prices of cloud instances
can also cause failures (e.g., out-of-bid events of spot instan-
ces). In this study, we mainly focus on the former type of fail-
ures that are most common in different systems. Specifically,
we study the cloud dynamics in system failures using a pro-
duction trace from Google Cloud [11], [23] which contains the
resource usage information of a large cluster (11k machines)
in 29 days. The consecutive intervals of failure events are often
modeled using an exponential distribution, where the mean
of the distribution is denoted as the Mean Time Between Fail-
ures (MTBF). Existing study [6] has found that different types
of cloud tasks (e.g., with different priorities) often have differ-
ent distributions of failure intervals. Fig. 2a shows the failure
interval distributions of four types of tasks, where each type
represents tasks with similar lengths. Specifically, type-1,
type-2, type-3 and type-4 tasks have average execution time
around 3, 10, 20 and 40minutes, respectively. Themean of the
four distributions range from 71, 203, 393 to 647 seconds,
meaning that the MTBF of a task is correlated to its execution
time. This can be further verified by Fig. 2b, which shows the
correlation between task execution time and MTBF obtained
from twelve types of tasks in the Google trace. Thus, for tasks
with performance variations, the failure distributions of the
task also vary, which makes the performance optimization of
cloudworkflowsmuchmore complicated.

3 PROBABILISTIC APPROACH IS NEEDED

As a motivating example, we present a budget-constrained
scheduling problem for workflows, which involves I/O and
network performance dynamics in the cloud. We first present
an existing solution [10] under static performance notions and
then discuss our solution considering cloud dynamics. We
show that cloud dynamics can greatly affect the optimization
effectivenesses.

3.1 Budget-Constrained Scheduling

Cloud providers usually offer multiple instance types with
different capabilities and prices. In this problem, we aim to
select a suitable instance type for each task in a workflow to

Fig. 1. (a) Spatial and (b) temporal features of the I/O and network per-
formance distributions of Windows Azure instances.
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minimize the workflow execution time while satisfying the
budget constraint.

Consider a workflow with N tasks running in a cloud
with K types of instances. The optimization variable of this
problem is vmij, meaning assigning instance type j (j ¼
0; 1; . . .; K � 1) to task i (i ¼ 0; 1; . . .; N � 1). The value of
vmij is 1 (i.e., task i is assigned to instance type j) or 0 (other-
wise). We denote the execution time of task i on instance
type j using r.v. Tij with a probability distribution fTijðtÞ.
We denote the workflow execution time (i.e., makespan)
with r.v. Tw and calculate its distribution fTwðtÞ using the
execution time distributions of tasks on the critical path
(denoted as CP ). The user-defined budget constraint is
denoted as B, which includes the instance rental cost and
networking cost. The unit time rental price of instance type
j is denoted as Uj. The networking cost of task i transferring
intermediate data to its child tasks is denoted as Ci

net. E½X�
denotes the expected value of a r.v. X. Formally, we formu-
late the problem as following.

minE½Tw� ¼ minE

�X
j

X
i2CP

Tij � vmij

�
(1)

s:t:
X

i

�X
j
E½Tij� � vmij � Uj þ Ci

net

�
� B (2)

X
j
vmij ¼ 1; 8i 2 0; . . .; N � 1 (3)

3.2 A Static Solution

The budget-constrained scheduling problem has been studied
by a number of existing studies [3], [4], using either heuristics
or model-basedmethods tominimize the optimization goal in
Equation 1. However, most of them assume static task execu-
tion time during the optimization. In this subsection, we intro-
duce an existing staticmethod [10] which formulates resource
provisioning problems as search problems, and adopt generic
search or more efficient A

?
search to search for a good solu-

tion. We choose this algorithm for its generality. We briefly
present the behavior of the search algorithm as below (also
seeAlgorithm 1).

� State representation: A state s in the solution space is
modeled as a N-dimensional vector, where si stands
for the instance type assigned to task i. vmij equals
to 1 if j ¼ si and 0 if otherwise.

� Initial state: All tasks are assigned to instance type 0
initially.

� State traversal: The search process is like a BFS
search. A state s on the lth level of the search tree
transits to another state by incrementing the lth
dimension of s.

� State evaluation: Each found solution is evaluated
using Equation 1 for the optimization goal and Eq. (2)
for the optimization constraint. After evaluating a solu-
tion, we compare it with the best found solution and
keep the onewhich has a better optimization goalwhile
satisfying the budget constraint at the same time.

� Pruning rule: If a state s has violated the budget con-
straint, we do not further traverse the descendants
from s because the states on the branch must have
higher monetary cost than state s (assuming instance
type 0 is the cheapest).

Fig. 2. Failure dynamics in Google trace: (a) failure interval distributions
of four types of tasks; (b) relationship between task execution time and
MTBF.

Algorithm 1
Static (left) and Probabilistic (right) Search Algorithms for Budget-Constrained Scheduling on WorkflowW

1: Preserve the best solution CurBest; Preserve the best solution CurBest;
2: P = PreProcessing(W; entry; exit); P = PreProcessing(W; entry; exit);
3: ... ⊳ State traversal ... ⊳ State traversal
4: Given a solution s, assign instance configurations

in s to each task inW ;
Given a solution s, assign instance configurations
in s to each task inW ;

5: Initialize workflow execution time as time ¼ 0; Define workflow execution time distribution Time;
6: for each path in P do for each path in P do
7: TaskBundling(TaskClustering(path)); TaskBundling(TaskClustering(path));
8: Initialize the length of path as t ¼ 0; Define the length distribution of path as T ;
9: for each task tk on path do for each task tk on path do
10: if tk is the first task in path then
11: T ¼ Ttk;
12: t ¼ tþ ttk; elseT = Add(T; Ttk);
13: if t � time then if path is the first path in P then
14: time ¼ t; Time ¼ T ;
15: else Time =Max(Time; T )
16: ... ⊳ Evaluate the expected cost ... ⊳ Evaluate the expected cost
17: if cost � B then if cost � B then
18: if time < CurBest:time then if Compare (CurBest:Time; Time) > 0:5 then
19: CurBest ¼ s; CurBest ¼ s;
20: ... ⊳ Go back to state traversal ... ⊳ Go back to state traversal
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� Termination: The search process terminates if the
entire solution space has been traversed or a pre-
defined number of iterations is reached. On termina-
tion, the feasible state with the best optimization
goal is returned as the final result.

3.3 A Probabilistic Method

To incorporate cloud dynamics into the static method, we
have made two efforts. First, we take the I/O and network
performance dynamics as input to estimate the execution
time of a task. As a result, the task execution time Tij is a
random variable with a probability distribution calculated
from the I/O and network performance distributions. Sec-
ond, whenever Tij is used in the search process, we perform
probabilistic calculations on distributions, e.g., adding task
execution time distributions and finding the maximum exe-
cution time distribution of multiple paths (i.e., finding the
critical path) to evaluate the optimization goal in Equation 1,
and comparing the evaluation metric distributions of two
found solutions to find a good solution.

The distribution addition with two independent r.v., e.g.,
Z ¼ X þ Y , can be calculated as below.

fZðzÞ ¼
Z 1

�1
fY ðz� xÞfXðxÞ dx: (4)

Finding the maximum distribution of two independent r.v.,
e.g., Z ¼ maxfX;Y g, can be calculated as below. FXðxÞ and
FY ðyÞ are the cumulative distribution functions (CDFs) of X
and Y , respectively.

fZðzÞ ¼ d

dz
FY ðzÞFXðzÞ ¼ FY ðzÞfXðzÞ þ FXðzÞfY ðzÞ: (5)

We adopt the following definition to compare two evalua-
tion metric distributions. Given two independent r.v. X and
Y , we haveX > Y if P ðX > Y Þ > 0:5, where

P ðX > Y Þ ¼
Z 1

�1

Z 1

y

fXðxÞfY ðyÞ dxdy: (6)

Fig. 3 gives a concrete example to show the difference between
static and probabilistic optimizations. Consider the budget-
constrained scheduling problem for a simple workflow with
four tasks. The execution time distributions of the tasks have
been calculated using I/O and network performance distribu-
tions, as shown in the table. There are 2 paths in theworkflow.
To optimize the workflow performance, we need to first iden-
tify the critical path and then schedule tasks on the critical
path to more powerful instances. We make the following two
observations.

3.3.1 Probabilistic optimization is more effective

With the traditional static method, the expected lengths of
edges are used for evaluations and path 2 is returned as the
critical path with a length of 352. With our probabilistic
method (will be introduced in details in Section 4), we first
calculate the length distributions of the two paths and then
calculate the maximum of the two distributions. Given the
length distributions of path 1 and 2 (denoted as ~T1 and ~T2,
respectively), we calculate the expected length of the critical
path to be 396.5. The probability of path 2 being the critical
path is only 0.41. Theoretically, this observation is sup-
ported by the following lemma.

Lemma 1. Given two independent r.v. X and Y , for the r.v. Z ¼
maxfX;Y g, we have E½Z� � maxfE½X�; E½Y �g.

Proof. According to Equation 5, we have

E½Z� ¼
Z 1

�1
zfZðzÞ dz ¼

Z 1

�1
z½FY ðzÞfXðzÞ þ FXðzÞfY ðzÞ� dz

¼
Z 1

�1
z

Z z

�1
fY ðyÞfXðzÞ dydzþ

Z 1

�1
z

Z z

�1
fXðxÞfY ðzÞ dx dz

�
Z 1

�1
y

Z x

�1
fY ðyÞfXðxÞ dydxþ

Z 1

�1
y

Z 1

x

fXðxÞfY ðyÞ dx dy

¼
Z 1

�1
yfY ðyÞ dy

Z 1

�1
fXðxÞdx ¼ E½Y �:

(7)

Similarly, we haveE½Z� � E½X�. Thus Lemma 1 is proven. tu
Lemma 1 proves that, for parallel structured dataflows,

the static method using average task execution time as input
always under-estimates the expected workflow execution
time. Thus, the evaluation results of static and probabilistic
approaches are different, and ignoring cloud dynamics can
lead to inaccurate or even incorrect optimization results.

3.3.2 Probabilistic optimization is costly

A straightforward way to implement probabilistic optimiza-
tion is to use the sampling-basedMonteCarlo (MC) approach,
which calculates all possible results using input probability
distributions. For example, to obtain the sum distribution of
Equation 4, we perform M times of MC calculations. In each
calculation, we randomly sample values from the discretized
distributions fXðxÞ and fY ðyÞ to get a possible result of the
sum. After the M times calculations, we can create the sum
distribution using the M calculated sum results. Thus, the
time complexity of adding two task execution time distribu-
tions is OðMÞ and for adding n tasks is Oððn� 1ÞMÞ. Note
that M is usually very large to achieve good accuracy. In our
experiments for the budget-constrained scheduling problem,
we set M to be 10,000 for the MC method. In this case, the
probabilistic addition operation is 10,000 times more costly
than the static operation. For a workflow with complex struc-
ture and a large number of tasks, the time complexity for cal-
culating the workflow execution time distribution is high.
Similarly, with the MC approach, the time complexity of cal-
culating themaximumdistribution isOðMÞ and of comparing
two evaluation metric distributions is OðM2Þ. Thus, the com-
putation overhead of probabilistic optimization is prohibi-
tively high due to the large M, complex workflow structures
and costly distribution comparisons.

Fig. 3. An example of probabilistic optimizations.
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In summary, probabilistic distributions improve the effec-
tiveness of workflow optimizations in the dynamic cloud
environment while at the same time causing a large optimiza-
tion overhead. This motivates us to develop an effective and
efficient approach for resource provisioning problems of
workflows in the cloud.

4 EFFICIENT PROBABILISTIC OPTIMIZATIONS

4.1 Optimizations in a Nutshell

In this paper, we propose a probabilistic optimization
approach named Prob for incorporating cloud dynamics
into workflow optimizations. As discussed above, Prob has
a large overhead. In this section, we introduce three simple
yet effective pruning stages to improve the efficiency of
Prob, including pre-processing, workflow-specific and dis-
tribution-specific optimizations.

First, calculating the makespan of a workflow is a com-
mon operation in many resource provisioning problems of
workflows. Thus, we propose pre-processing pruning to
reduce the overhead of this important calculation and hence
reduce the overhead of probabilistic optimizations. This
stage is an offline optimization stage, as a workflow only
needs to be optimized once and for all. Second, we propose
workflow-specific optimizations using existing workflow
transformation techniques to reduce the overhead of evalu-
ating one instance configuration solution. Third, we pro-
pose two pruning techniques to reduce the overhead of
comparing multiple solutions. The latter two stages are
called at the runtime of solution search.

4.2 Pre-Processing

Due to cloud dynamics, the execution time of a workflow is
represented as a random variable. To obtain the probability
distribution of the random variable, we first decompose a
workflow into a set of paths starting from the entry task to the
exit task of the workflow. The execution time distribution of
the workflow is the maximum of execution time distributions
of all paths in the set.We further propose a critical path pruning
and a path binding technique to reduce the number of paths in
the set and hence reduce the overhead of calculating work-
flowexecution timedistribution. In Fig. 4,weuse the structure
of a real-world scientific workflow namedMontage [24] as an

example to demonstrate the effectiveness of the two pruning
techniques.

Given a workflow, we can easily enumerate all paths in
the workflow using depth-first search in OðV þ EÞ time,
where V and E are the number of vertices and edges in the
workflow, respectively. Assume all paths from the entry
task to the exit task are stored in a set S. For example, in
Fig. 4, we initially have 48 paths in S. We propose two tech-
niques to reduce the size of S.

4.2.1 Critical Path Pruning

This technique eliminates the paths that are impossible to be
the critical path from S. For example, in Fig. 4, as the execu-
tion time of path P2 has to be shorter than that of path P1, it
is clear that P2 is impossible to be the critical path. Similarly,
path P48 is impossible to be the critical path due to path P47.
Thus, we can eliminate such paths from S and reduce the
size of S from 48 to 44. We denote the set of paths after
pruning as S0.

The critical path pruning follows the following rule:
given any two paths P1 and P2 between the entry and exit
tasks of a DAG, if the set of nodes in P1 is a subset of that in
P2, P1 is not the critical path. We order all paths in S accord-
ing to their lengths, and iteratively compare the longest
path with the ones shorter than it using the above rule. The
worst-case time complexity of this technique is OðjSj2 � V Þ.

4.2.2 Path Binding

Given S0 in Fig. 4, we need in total 352 distribution additions to
evaluate path distributions and 43 distribution maximum
operations to obtain workflow execution time distribution.
However, we find that when evaluating P 01 and P 02 separately,
many of the distribution additions are repetitive. By binding
P 01 withP 02, we can reduce the overhead of 16 distribution addi-
tions to 8 distribution additions and one operation on calculat-
ing the maximum distribution of task 4 and 5. We can apply
the binding to all paths in S0 and reconstruct them to a single
path as shown in S00. With S00, the overhead of calculating
workflow execution time distribution is reduced to 8 additions
and 11 maximum operations. As the distribution addition and
maximum operations have the same time complexity with the
MCmethod, path binding reduces the overhead by 95 percent
in this example.

Fig. 4. An example of pre-processing for Montage workflow.
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Formally, the path binding technique binds two paths
with the same length L in the following way. We compare
each node of one path with the node in the same position of
another path in order. If the ith nodes (i ¼ 0; . . . ; L� 1) are
the same, they are adopted as the ith node of the binded
path. Otherwise, we bind the ith nodes of the paths as one
node, the execution time of which is the maximum of the
ith nodes of the two paths. Assume there are k binded
nodes in the binded path, the calculations saved by binding
the two paths is L� k� 1. We iteratively select two paths in
S0 with the best gain to bind until no gain can be further
obtained or the largest number of iterations have been
reached. This technique is very useful to data processing
workflows such as MR jobs, where the input data partitions
go through the same levels of processing (i.e., all paths have
the same length). The worst-case time complexity of this
pruning is OðjS0j2 � LÞ, where L is the average length of
paths in S0.

Note that the pre-processing optimization only needs to
be applied once at offline and the results can be reused for
different resource provisioning problems of the same work-
flow structure.

4.3 Workflow-Specific Optimizations

After the pre-processing stage, evaluating a found solution,
namely calculating the execution time distribution of a work-
flow according to the instance configurations indicated by the
solution, is simplified to calculating the distributions of sev-
eral paths. The workflow execution time distribution is calcu-
lated as themaximumdistribution of all path distributions.

We decompose the calculation of workflow execution
time distributions into two constructive operations, namely
ADD and MAX. The ADD operation can be applied to the
distributions of two dependent tasks while the MAX opera-
tion can be applied to the distributions of two parallel tasks
or two paths from the pre-processing result. We define
ADD and MAX as binary operators, which operate on two
probability distributions at a time.

The calculation of ADD and MAX operations are intro-
duced in Eqs. (4) and (5), respectively. As discussed in Sec-
tion 3, a straight-forward implementation of ADD and
MAX is to use the sampling-based MC method. However,
this implementation is very costly due to complicated work-
flow structures and the large sampling size. Thus, we adopt
two existing workflow transformation optimizations to
reduce the overhead of ADD andMAX.

For many resource provisioning problems of workflows,
existing studies have proposed various workflow transfor-
mations to simplify workflow structures, such as task bun-
dling [25] and task clustering [26]. Both operations attempt to
increase the computational granularity of workflows and
reduce the resource provisioning overhead. In this paper,
we discuss the two operations from the perspective of prob-
abilistic optimizations.

4.3.1 Optimizing ADD with task bundling

Task bundling treats two pipelined tasks which have the
same assigned instance type as one task, and runs them on
the same instance sequentially. For example, in Fig. 4, we
can bundle tasks 10 and 11 in P 001 as one task when they

have the same assigned instance type. Task bundling can
increase instance utilization and reduce the amount of data
transfer between dependent tasks. This technique gives us
the opportunity to reduce the overhead of ADD operation.
When applying the ADD operation on two tasks, if the tasks
satisfy the requirement of task bundling, we can directly
generate the resulted distribution using the I/O and net-
work profiles of the two tasks without calculating their dis-
tributions separately.

4.3.2 OptimizingMAXWith Task Clustering

In scientific workflows, tasks on the same level, using the
same executable for execution and having the same prede-
cessors are identified as equivalent tasks. In MR workflows,
we can easily identify the map/reduce tasks on the same
level as equivalent tasks. Task clustering groups two equiv-
alent tasks assigned to the same instance type as one task
and schedule them to the same instance for parallel execu-
tion. For example, in Fig. 4, tasks 12 to 15 in P 001 can be iden-
tified as equivalent tasks and grouped as one task with
three times of clustering. Note that, the four tasks cannot be
viewed as equivalent tasks before the pre-processing (e.g.,
in S and S0), since they have different predecessors. Thus,
our pre-processing optimization increases the possibility of
further optimizations. The number of equivalent tasks to be
scheduled on the same instance is determined by the
resource capacity of the instance. The task clustering tech-
nique offers opportunity to reduce the overhead of MAX
operation.

As equivalent tasks have the same (or similar) resource
requirements and are executed on the same instance in par-
allel, we can use the execution time distribution of one of
the equivalent tasks to represent the distribution of the clus-
tered task. This can be verified with Equation 7, where
E½maxfX; Y g� ¼ E½X� ¼ E½Y � when X and Y are the same
random variable. However, we must consider the perfor-
mance degradation of the clustered tasks due to resource
contention. Thus, when applying the MAXoperation on two
tasks, if they satisfy the requirement of task clustering, we
use fXðx2Þ to represent the resulted distribution assuming
fXðxÞ is the execution time distribution of one of the two
tasks. With this optimization, we reduce the overhead of
MAX from OðMÞ to Oð1Þ.

4.4 Distribution-Specific Optimizations

Given two resource provisioning solutions (i.e., two vectors
of instance configurations for each task in the workflow),
we need to evaluate each individual solution and compare
their evaluation metric distributions to find a good solution.
In the above, we have proposed to reduce the overhead of
evaluating one solution. Thus, in this subsection, we mainly
focus on reducing the overhead of solution comparisons to
reduce the overhead of probabilistic optimizations. Specifi-
cally, we propose a partial solution evaluation technique
and adopt an existing pruning in probabilistic database to
reduce the overhead of solution comparisons.

4.4.1 Partial Solution Evaluation

As the purpose of solution evaluations is to compare their
quality and find a good one, we propose a partial solution
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evaluation technique. The idea is to avoid fully evaluating
two solutions while guaranteeing the same solution com-
parison result. When evaluating two found solutions s and
s0, we only calculate the distributions of tasks with different
configurations in s and s0 (i.e., 8i where si 6¼ s0i). We claim
that comparing the partially evaluated distribution of s
with that of s0 gives the same result as comparing the fully
evaluated distributions. This property is guaranteed by
Lemma 2.

Lemma 2. Given two r.v. X and Y , assume X � Y . Then we
have gðX;ZÞ � gðY; ZÞ for any r.v. Z independent from X and
Y , where gð�Þ is ADD orMAX.

Proof. When gð�Þ is ADD, as P ðX � Y Þ > 0:5, we have
P ðX þ Z � Y þ ZÞ > 0:5. When gð�Þ is MAX, denote
maxfX;Zg as a r.v. A, we have

P ðA � maxfY; ZgÞ ¼ P ðA � Y; Y � ZÞ þ P ðA � Z;Z > Y Þ
(8)

Further, we have

1 ¼ P ðA � Y; Y � ZÞ þ P ðA � Y; Y < ZÞ
þ P ðA < Y; Y � ZÞ þ P ðA < Y; Y < ZÞ (9Þ

and

P ðA < minfY; ZgÞ ¼ P ðA < Y; Y < ZÞ þ P ðA < Z; Y � ZÞ
¼ P ðA < Y; Y < ZÞ þ P ðY � ZÞ � P ðA � Z; Y � ZÞ:

(10)

Thus, we have the following:

P ðA � maxfY; ZgÞ þ 1� 1

¼ P ðA � Y; Y � ZÞ þ P ðA � Y; Y < ZÞ
þ P ðA � Z;Z > Y Þ þ P ðA � Z;Z � Y Þ � P ðA � Z;Z � Y Þ
þ P ðA � Y; Y � ZÞ þ P ðA < Y; Y � ZÞ þ P ðA < Y; Y < ZÞ � 1

¼ P ðA � Y Þ þ P ðA � ZÞ þ P ðA < minfY; ZgÞ � 1

� 0:5þ 1þ 0� 1 ¼ 0:5:

(11)

Thus, Lemma 2 is proven. tu
Assume we visit in total n solutions during the solution

search process, the overhead of full solution evaluations
would be Oðn� ðN � 1Þ �MÞ, where N is the number of
tasks in a workflow. With our partial evaluation technique,
assume the average number of different configurations in a
pair of solutions is N 0, the overhead of solution evaluations
is reduced to Oð2n� ðN 0 � 1Þ �MÞ. In many resource pro-
visioning methods, such as the search method introduced
in Section 3.2, adjacent solutions on the search tree only dif-
fer by a few configurations (i.e., N 0 	 N

2 ). Thus, the partial
evaluation technique can greatly reduce solution evaluation
overhead. This pruning can be disabled when comparing
two solutions where half of the tasks are assigned with dif-
ferent configurations.

4.4.2 Distribution Comparison Pruning

After solution evaluations (either partial or full evaluations),
we repeatedly use Eq. (6) for distribution comparisons during

the solution search process. The complexity of one distribu-
tion comparison isOðM2Þ, which is very high due to the large
sampling size M. Thus, we adopt an existing pruning tech-
nique [18] in probabilistic database to prune the unnecessary
calculations of Equation 6. The basic idea is briefly described
as follows.

Assume r.v. X (resp. Y ) has the lower and upper bound
of X:l (resp. Y:l) and X:r (resp. Y:r), respectively. With
Eqs. (12) and (13), we can estimate the lower bound or
upper bound of P ðX > Y Þ. If the lower bound is greater
than 0.5 or the upper bound is less than 0.5, we can prune
the calculation of Eq. (6).

If X:l � Y:r � X:r; P ðX > Y Þ � 1� FXðY:rÞ (12)

If X:l � Y:l � X:r; P ðX > Y Þ � 1� FXðY:lÞ (13)

5 IMPLEMENTATION DETAILS

Fig. 5 shows how Prob can be used by existing data process-
ing systems. We introduce two main implementation details
of Prob.

First, Prob stores system states (e.g., cloud performance
calibrations) and maintains the histograms (i.e., discrete dis-
tributions) of cloud dynamics. Those distributions are taken
as input by the Prob-enabled system schedulers to find the
optimal job scheduling solution. Specifically, we consider
two types of system states, including 1) instance-related
states such as price, CPU, I/O and network bandwidths of
all instance types and 2) job-related states such as job start
time, finish time and failures. System states are calibrated
and updated periodically. We adopt the same method as in
our previous work [22] to calibrate system states.

We maintain system state calibrations in the form of histo-
grams. The number of bins in a histogram is carefully selected
to balance the trade-off between optimization accuracy and
overhead. Based on our sensitivity studies, we set this param-
eter to 200 by default. The histograms are used by Prob for
probabilistic evaluations of solutions. We adopt a window-
basedpredictionmethod to estimate the distributions of cloud
dynamics in the future. The estimation simply assumes that
the distribution of a dynamics factor in the current window is
the same as that of the previous window. We select the win-
dowsizewhich generates the shortest distance betweendistri-
butions in two adjacent windows. According to sensitivity
studies, we set this parameter to one day by default for cloud
I/O and network performance distributions.

Second, Prob offers a runtime library which exposes the
probabilistic operations (e.g., ADD and MAX) and pruning

Fig. 5. System implementation.
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techniques designed for resource provisioning problems of
workflows. Existing schedulers of data processing systems
can call the APIs in the library when implementing their
resource provisioning methods to incorporate probabilistic
optimizations. The data processing system schedules jobs to
the cloud resources according to the optimized scheduling
solutions. There are three types of APIs in the library, as
summarized in Table 1.

We take the budget-constrained scheduling problem as an
example to show how users can modify their existing method
using provided APIs. Algorithm 1 shows the modifications
users need tomakewhen incorporatingprobabilistic optimiza-
tions (right) into the existing search algorithm [10] introduced
in Section 3.2 (left). Users mainly need to modify their state
evaluation logics using our APIs (partial solution evaluation is
omitted for clarity of presentation). Given a workflow W to
optimize, users first call the PreProcessing() API to get an
pruned set of critical paths P (Line 2). Given a found solution,
users assign the instance configurations to each task of the
workflow and call the TaskBundling() and TaskClustering()
APIs to simplify the paths (Line 4-7). Note that, for fair com-
parison, we implement the pre-processing, task bundling and
task clustering optimizations for bothmethods. TheAdd() and
Max() APIs are used to evaluate the distributions of paths and
the distribution of workflow (Line 8-15). Lines 17-19 show
how to use the Compare() API tomaintain the best found solu-
tion. With the APIs in the runtime library, users need little
changes (highlighted with underlines) to their existing imple-
mentation in order to enable probabilistic optimizations.

6 FAULT TOLERANCE PROBLEM

Besides the I/O and network performance dynamics, many
other dynamics exist and affect the resource provisioning
results of data processing workflows in the cloud. For exam-
ple, the job failure events in the cloud can be dynamic and
follow different probability distributions for jobs with dif-
ferent lengths [6]. As failures can happen in the cloud very
often [6], [27], it is important to explore fault tolerance tech-
niques to ensure the execution reliability and correctness for
workflows. In this section, we present a fault tolerance prob-
lem, which considers the combined effect of cloud performance
dynamics and dynamic system failures to workflow executions.
We study fault tolerance techniques based on the check-
pointing/restart mechanism. Our goal is to determine the

checkpoint interval for each task of a workflow in order to
minimize the expected makespan of the workflow.

Problem Formulation.The optimization variable of this prob-
lem is the checkpoint interval Vi for each task i. The check-
point cost is denoted asCk and the recovery cost is denoted as
Cr. We model the time interval between two failure events in
task i as a random variable with a probability distribution
fFiðtÞ. The expected value of r.v. Fi is called mean time
between failure (MTBF), and it has been observed that MTBF
of different tasks is correlated to the task execution time [6].
We perform checkpointing for each task of a workflow indi-
vidually according to the optimized checkpoint interval. Once
a task fails, it is restartedwith the same configuration from the
last checkpoint. We can formulate this problem as following.
Note that, the formula involves two types of probability distri-
butions, namely the execution time and failure interval distri-
butions of each task.

minE

�X
i2CP Ti �

�
1þ Ck

Vi
þ Cr � Vi

2Fi

��
: (14)

A Static Solution. An extended Young’s formula [6] has
recently been proposed to optimize the checkpoint interval
in a checkpointing/restart mechanism for cloud jobs. We
use this method to calculate the optimal number of check-
points (x
i ¼ Ti=Vi) for a task i as in Formula 15, where
EðTiÞ is the expected task execution time without failure and
EðYiÞ is the expected number of failure events occurred dur-
ing the execution of the task (i.e., Yi ¼ Ti=Fi).

x
i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðTiÞ � EðYiÞ

2Ck

s
: (15)

The Probabilistic Method. With Prob, both Ti and Yi in
Equation 15 are represented as random variables. The prob-
ability distribution of Yi can be calculated using fFiðtÞ and
fTiðtÞ. It is easy to observe that E½Yi� 6¼ E½Ti�=E½Fi�, which
means that the static method would lead to suboptimal fault
tolerance solutions.

To demonstrate the effectiveness of our probabilistic
method and show the complexity of the fault tolerance
problem, we give a concrete example as shown in Fig. 6.
Consider a simple task with execution time and failure

TABLE 1
Description of APIs in the runtime library.

API Parameter(s) Return

V ð~P Þ  PreProcessingðW; s; tÞ W : The workflow to be optimized s, t: The
source and target node ID

V ð~P Þ: A set of paths ~P starting from s to t in the
workflowW

P 0 TaskBundlingðP Þ
P 0 TaskClusterinðP Þ

P : The path to be optimized P 0: The path after optimization

Pc MaxðPa; PbÞ Pc 
AddðPa; PbÞ
p CompareðPa; PbÞ

Pa, Pb: Two probability distributions Pc: The max/sum distribution of Pa and Pb p:
Probability of Pa > Pb

ðP1; P2Þ  PartialEvalðs1; s2Þ s1; s2: Two found solutions P1; P2: Evaluated distributions of s1 and s2,
respectively
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distributions as shown in the figure. The distribution of failure
interval is related to the MTBF, which in turn is correlated to
task execution time [6]. We denote the correlation using func-
tion gð�Þ. The checkpoint overhead is 2s. Using Eqs. (15)
and (14), we can calculate the optimized checkpoint interval
and further obtain the expectedmakespan of the task. Accord-
ing to the example, our probabilistic method generates shorter
checkpoint interval and shorter expected makespan than the
staticmethod. For a realworkflowwithmany tasks, our proba-
bilistic method obtains even higher reduction on the expected
makespan than static method. Also, due to the correlation of
two types of system dynamics, the computation complexity of
the probabilistic method for the fault tolerance problem is
much higher than that of the budget-constrained scheduling.
Consider the sampling-based MC method and set the sam-
pling size of a probability distribution toM. Then the compu-
tation complexity of an ADD operation for the fault tolerance
problem is M2 and for the budget-constrained scheduling is
onlyM.

7 EVALUATIONS

We evaluate the effectiveness and efficiency of Prob using
the two workflow optimization problems. To demonstrate
the effectiveness of probabilistic optimizations, we compare
existing state-of-the-art workflow optimization approaches
with and without Prob incorporation. For efficiency, we
compare the optimization overhead of Prob with the over-
head of MC. We run the compared approaches on a server
with 64GB DRAM and two 8-core Intel Xeon CPUs. Work-
flows are executed on real clouds or a cloud simulator.

7.1 Experimental Setup

7.1.1 Data processing workflows

We consider data processing workflows from scientific and
data analytics applications, denoted as scientific and MR
workflows, respectively. Fig. 7 shows the structure of the
workflows.

The tested scientific workflows include the I/O-intensive
Montageworkflow anddata-intensive CyberShakeworkflow.
We create Montage workflows with 10,567 tasks each using

Montage source code. The input data are the 2MASS J-band
images covering 8-degree by 8-degree areas retrieved from
the Montage archive [28]. Since CyberShake is not open-
sourced, we construct synthetic workflows with 1000 tasks
each usingworkflow generator [24].

The MR workflows include two TPC-H queries, Q1 and
Q9, expressed as Hive programs. Q1 is a relatively simple
selection query, and Q9 involves multiple joins. Both
queries have order-by and group-by operators. The input
data size is around 500GB (the scale factor is 500) and is
stored on the local HDFS. A Hive query is usually com-
posed of several MR jobs. Q1 is composed of two MR jobs
and Q9 is composed of seven MR jobs. We further experi-
mented with the BigDataSort workload from BigData-
Bench [29] as a complementary big data workflow to Q1
and Q9 workflows. BigDataSort has 110 tasks and uses 100
GB data randomly generated from Wikipedia entries as
input data.

7.1.2 Implementation details

For budget-constrained scheduling, we conduct experi-
ments on both real clouds and simulator to study workflow
optimization in a controlled and in-depth manner. For real
clouds, we adopt both Amazon EC2 and Windows Azure,
which are the most popular public clouds with different
dynamics features. We use four types of instances with dif-
ferent prices and computational capabilities on each cloud,
including m1.small, m1.medium, m1.large and m1.xlarge
on Amazon EC2, and A1, A2, A4 and A8 on Windows
Azure. On real clouds, we utilize an existing workflowman-
agement system named Pegasus [19] to execute scientific
workflows, and deploy Hadoop and Hive to run the TPC-H
queries. We use Spark to run the BigDataSort workload. We
adopt an existing cloud simulator [10] designed based on
CloudSim [30] to simulate the dynamic cloud environment.
As CyberShake is not open-sourced, we use simulations for
all CyberShake evaluations.

We run all fault tolerance evaluations with trace-driven
simulations, using system performance traces of Amazon
EC2 and performance traces adopted from [31], which sim-
ulate performance dynamics of HPC systems, to study the
failure behaviors of different types of systems. We evaluate
the average makespan of workflows executing on a virtual
cluster of 50 instances using simulator. We use the perfor-
mance trace of the m1.xlarge instances for Amazon EC2
evaluations. The I/O traces adopted from [31] are collected
by measuring the I/O bandwidth given to one application
when simultaneously running multiple applications in a

Fig. 6. An example of the failure tolerance problem.

Fig. 7. Structures of experimented data processing workflows.
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dedicated HPC environment, which is deployed on the Ren-
nes site of Grid’5000 [32] (refer to [31] for more details on
the experimental setting). Hereafter we refer to this setting
as HPC system.

7.1.3 Parameter setting

In each experiment, we submit 100 jobs for each workflow
with job arrival time in a Poisson distribution (� ¼ 0:1 by
default), which is sufficiently large for measuring the stable
performance. We present the detailed experimental settings
for each workflow optimization problem as follows.

Budget-Constrained Scheduling.We compare Probwith two
static algorithms named Deco and Deco-W, which optimize
the performance of workflows using the expected and
worst-case (90th percentile) of cloud dynamics distribu-
tions, respectively. The static algorithms adopt the search
method [10] as shown in Algorithm 1. We set a loose budget
and a tight budget as Bminþ3Bmax

4 and 3BminþBmax
4 , respectively,

where Bmin and Bmax are the expected cost of executing all
tasks in the workflow on m1.small (A1) instances and on
m1.xlarge (A8) instances, respectively. Given a budget, we
run the compared algorithms for 100 times and compare the
obtained average monetary cost and execution time. With
different budgets, we can see clear trade-off between the
cost and time optimization results.

Fault Tolerance Optimization. The makespan of a workflow
includes the task execution time, checkpoint/recovery over-
head and the time wasted on the rollback of task execution
to its closest checkpoint. We set the recovery overhead to 1
second by default. For Amazon EC2, we vary the checkpoint
overhead from 2, 10 to 50 seconds and vary the recovery
overhead from 1 to 10 seconds to study the behavior of Prob
under different system performances. For HPC system, we
fix the checkpoint overhead to 50 seconds due to the large
checkpoint overhead of parallel file systems in data-inten-
sive clusters [33]. We study the failure events of tasks with
different lengths in Google Trace [11] and correlate the
MTBF of tasks with their lengths using polynomial regres-
sion as shown in Fig. 2b. We generate failure events for each
task following Poisson distribution, where the � parameter
of the distribution is set according to the MTBF of tasks
with similar execution time in the Google Trace. Assume no
failure happens when checkpointing.

We compare Prob with the static Young’s formula [6] to
study the impact of cloud dynamics in performance and sys-
tem failures. To further breakdown the impact of the two
dynamics, we compare Prob with ProbNP and ProbNF, which
are Probwithout considering cloud dynamics in performance
and failures, respectively.ProbNPuses the expected execution
time of tasks and ProbNF uses the expected MTBF for the
optimization.

7.2 Optimization Effectiveness

7.2.1 Budget-constrained Scheduling

Fig. 8 and 10 present the average execution time and mone-
tary cost optimization results of the compared algorithms
on Amazon EC2 and Windows Azure, respectively. The
execution time results are normalized to those of Prob and
the monetary cost results are normalized to the budget. In

the following, the error bars show the standard deviation of
the results.

Results on Amazon EC2.Compared toDeco-W, Prob is able to
obtain better performance results while satisfying the budget
constraint under all cases. Specifically, Prob reduces the
expected execution time over Deco-W by 38 percent for Mon-
tage under the tight budget, and by 3, 65, 27, 48 and 21 percent
for Montage, CyberShake, Q1, Q9 and BigDataSort, respec-
tively, under the loose budget. Deco-W cannot find a feasible
solution for CyberShake, Q1, Q9 and BigDataSort under the
tight budget as these workflows are more data-intensive than
Montage. The reason that Prob outperforms Deco-W is that
Deco-W tends to over-estimate themonetary cost when search-
ing for a good solution. Thus, in cases of tight budget, it is hard
for Deco-W to find a feasible solution. For those data-intensive
workflows, Deco-W is able to obtain a feasible solution only
when we set it to use the cloud performance below 82th per-
centile of the dynamics distributions. In cases of loose budget,
Deco-W may return scheduling solutions with cheaper
instance types than Prob in order to satisfy the budget con-
straint, and thus result in poorer performance optimization
compared to Prob. For example, for Q9 workflow under the
tight budget, Deco-W estimates the expected monetary cost of
the solution obtained by Prob 17 percent higher than that of
Prob. To have a better idea on the distributions of the optimized
workflow execution time, we further compared the 95th per-
centile of the optimization results obtained by Prob and Deco-
W. Specifically, Prob reduces the 95th percentile of workflow
execution time over Deco-W by 35 percent for Montage under
the tight budget and by 11-56 percent under the loose budget.

Compared to Deco, Prob can better satisfy the budget con-
straint under all settings. In contrary to Deco-W, Deco tends
to under-estimate the monetary cost of each found schedul-
ing solution. For example, differences between the cost esti-
mated by Prob and Deco during solution search are up to 3,
8, 4, 11 and 7 percent for Montage, CyberShake, Q1, Q9 and
BigDataSort, respectively, under the tight budget. Under-
estimation of the cost leads to infeasible solutions due to

Fig. 8. Normalized results of budget-constrained scheduling under tight
and loose budget on Amazon EC2.
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budget violations. As shown in Fig. 8, Deco violates both the
tight and loose budget in the experiment for all workflows.
To further understand the impact of cloud dynamics, we
show the cumulative distributions of the monetary cost
results optimized by Deco and Prob for Montage and Cyber-
shake under the loose budget in Fig. 9. For Montage,
although the average monetary cost obtained by Deco is
very close to the loose budget according to Fig. 8b, only
around 27 percent of the executions actually satisfy the bud-
get constraint (i.e., normalized cost � 1). Prob satisfies the
budget constraint with a much higher probability of 63 per-
cent. When looking at the more data-intensive workflow
CyberShake, differences between the two algorithms are
more obvious. The budget violation of Deco leads to more
serious consequences with CyberShake, as the actual mone-
tary cost results are up to 94 percent higher than the budget
while the cost are only up to 13 percent higher than the bud-
get for Montage.

Results on Windows Azure. Similar to the results on Ama-
zon EC2, Prob obtains better performance optimizations
than Deco-W while satisfying the budget constraint. The dif-
ference is that, as the cloud performance of Window Azure
is more stable than that of Amazon EC2, Deco-W is able to
obtain feasible solutions for all workflows under the tight
budget. Specifically, Prob reduces the expected execution
time over Deco-W by 6, 23, 12, 43 and 33 percent under the

tight budget, and 2, 13, 3, 19 and 23 percent under the loose
budget for Montage, CyberShake, Q1, Q9 and BigDataSort,
respectively. Prob obtains larger execution time reduction
over Deco-W under the tight budget. This is because the
cloud performances of cheap instances are usually more
dynamic than expensive ones. When the budget is tight, the
scheduling solution contains more cheap instance types and
thus the monetary cost estimated by Deco-W is more distant
from the real value.

As for Deco, it again leads to infeasible solutions even
with the relatively stable performance of Windows Azure.
We show the cumulative distributions of the monetary cost
results optimized by Prob and Deco for CyberShake under
the tight and loose budget in Fig. 11. Under both budgets,
Deco can only satisfy the budget constraint at around 50 per-
cent of the time while Prob satisfies the budget constraint
with over 96 percent guarantee. Comparing Fig. 11b with
Fig. 9b, we can also observe the different dynamicities of
the two clouds, where the long tail of the monetary cost dis-
tribution goes up to twice the budget on Amazon EC2 while
the maximum cost on Windows Azure is only 20 percent
higher than the budget.

7.2.2 Fault Tolerance Optimization

Figs. 12 and 17 show the normalized average workflow
makespan optimized by the compared algorithms simulat-
ing on Amazon EC2 and HPC system, respectively. All
results are normalized to those of Young’s formula [6].

Results on Amazon EC2. Compared to Young’s formula,
Prob reduces the average makespan of Montage, Cyber-
Shake, Q1, Q9 and BigDataSort by 5, 11, 9, 12 and 6 percent
when the checkpoint overhead is 2 seconds, by 11, 19, 19, 22
and 13 percent when the checkpoint overhead is 10 seconds
and by 20, 26 percent, 27, 30 and 23 percent when the check-
point overhead is 50 seconds, respectively. We have the fol-
lowing observations.

First, Prob obtains better makespan results compared to
Young’s formula under all settings. To take a closer look at the
results, we break down the makespan into workflow execu-
tion time, checkpointing time and rollback time. Fig. 13 shows
the breakdown of the normalized makespan of a task on the
first level of Montage workflow, where Prob obtains shorter
rollback time and longer checkpointing time compared to
Young’s formula. This is mainly because Prob obtains shorter
checkpoint interval and performs checkpointing more fre-
quently than Young’s formula. As the time saved on task roll-
back is higher than the time wasted on checkpointing, Prob
obtains better makespan optimization result. Table 2 shows

Fig. 9. Cumulative distributions of the normalized monetary cost of Prob
and Deco on Amazon EC2 under the loose budget.

Fig. 11. Cumulative distributions of the normalized monetary cost of
CyberShake optimized by Prob and Deco on Windows Azure.

Fig. 10. Normalized results of budget-constrained scheduling under tight
and loose budget on Windows Azure.
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the checkpoint interval optimized by Prob for the Montage
workflow normalized to the results of Young’s formula. The
Montage workflow structure is reduced to five levels after the
clustering and bundling optimizations, and Prob obtains
shorter checkpoint interval for tasks on all levels of the
workflow.

Second, when the checkpoint overhead gets larger, Prob
obtains higher reduction on average workflow makespan
over the compared algorithms. This is mainly because when
the checkpoint overhead gets larger, the checkpointing is
less frequently and there are more failures between every
two checkpoints. Consider the example in Fig. 13, there are
on average 0.5 and 2.1 failures happened between every
two checkpoints optimized by Prob when the checkpoint
overhead is 2s and 50s, respectively. As a result, when the
checkpoint overhead gets larger, Prob saves more time on
the rollback. Specifically, the rollback time optimized by
Prob is 11 and 25 percent shorter than that of Young’s for-
mula while the checkpointing time of Prob is only 0.6 and 1
percent longer than that of Young’s formula, when the
checkpoint overhead is set to 2s and 50s, respectively.

Comparing Prob with ProbNP and ProbNF, it obtains the
shortest makespan for all workflows and the makespan
reduction increases with the increase of checkpoint over-
head. This means that considering both performance and
failure dynamics is important to the optimization of work-
flow makespan. We take a closer look at the results of Q1
workflow. Tasks on the first level of the workflow have
average execution time of 3239 seconds without failure.
When the checkpoint overhead is 50 seconds, checkpoint
interval optimized by Prob and ProbNF for the tasks are 185
and 285 seconds, respectively. As a result, the checkpoint
time of each task optimized by Prob and ProbNF are 1746
and 1439 seconds, respectively. Although Prob leads to lon-
ger checkpoint time due to shorter checkpoint interval com-
pared to ProbNF, it spends less time on failure recovery.
Specifically, the average time spent on rolling back to the

latest checkpoint optimized by Prob and ProbNF are 2662
and 4442 seconds, respectively.

ProbNP and ProbNF outperformYoung’s formula under all
cases. Specifically, ProbNP reduces the average workflow
makespan by 3-5, 8-14, and 17-27 percent over Young’s for-
mulawhen the checkpoint overhead is 2s, 10s and 50s, respec-
tively. ProbNF reduces the average workflow makespan by 1-
3, 2-6, and 0-6 percent over Young’s formula when the check-
point overhead is 2s, 10s and 50s, respectively. These results
further show thatProbNP outperformsProbNFunder all cases.
This shows that the failure dynamics play a more important
role in the fault tolerance problem than performance dynam-
ics. On one hand, this is because the performance dynamics of
m1.xlarge instances are not very significant on Amazon EC2.
When we use the performance of m1.small instances for
simultion, ProbNF sometimes outperforms ProbNP. For exam-
ple, when the checkpoint overhead is 2s, ProbNF reduces the
average makespan of Cybershake workflow by 19 percent
compared to ProbNP. On another hand, the failure dynamics
affect the entire workflow makespan while performance
dynamics only affect part of the makespan. For example, the
I/O performance dynamics have impact only on the I/O time
of a task. This observation can be further verified using the
experimental results onHPC system as discussed below.

We further study the impact of recovery overhead on
the effectiveness of Prob. Fig. 14 shows the normalized
optimization results for the fault tolerance problem using
Amazon EC2 trace when the recovery overhead is
increased from 1 to 10 seconds and the checkpoint over-
head is 2 seconds. Specifically, Prob reduces the average
workflow makespan by 6, 13, 22, 13 and 8 percent for
Montage, CyberShake, Q1, Q9 and BigDataSort, respec-
tively, compared to Young’s formula. The observation is
that, Prob obtains even higher improvement over static
method when the recovery overhead becomes larger. This
is mainly because there are more failures happening for
jobs optimized by Young’s formula than that of Prob.
Thus, the large recovery overhead has a higher impact on
the Young’s formula than on Prob.

Fig. 12. Normalized optimization results for the fault tolerance problem on Amazon EC2.

Fig. 13. Makespan breakdown of a Montage task when ckp. overhead is
2s and 50s.

TABLE 2
Checkpoint interval optimized by Prob for Montage tasks. All

values are normalized to those of Young’s formula.

ckpt overhead level-1 level-2 level-3 level-4 level-5

2s 0.76 0.82 0.87 0.50 0.77

10s 0.75 0.75 0.82 0.50 0.76

50s 0.65 0.66 0.69 0.45 0.67
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Results on the HPC System.The evaluatedHPC system is dif-
ferent from the cloud in two ways. First, as shown in Fig. 15b,
we mainly consider the cross-application I/O performance
dynamics of HPC system and its I/Operformance is relatively
more stable than the cloud I/O performance. Second, the
aggregated I/Obandwidth per application on theHPC system
can reach up to Gigbytes per second, which is much higher
than that on the cloud. As a result, the performance dynamics
factor has very little impact on the workflow makespan opti-
mization on theHPC system. For example, as shown in Fig. 17,
Prob (ProbNF) obtains similar results as ProbNP (Young’s for-
mula) for CyberShake, Q1 andQ9workflows.

We introduce a new data-intensive workflow named
PSMerge [34] to replace Montage and show the impact of
performance dynamics on the HPC system. PSMerge is an
astronomical workflow which preprocesses and updates
data from the PS1 telescope to the database. PSMerge in
total reads/writes 34PB of data. Thus, the I/O time of
PSMerge occupies a large proportion of its overall make-
span and the I/O dynamics of the system lead to unignor-
able performance dyanamics of the workflow. Fig. 16 shows
the execution time distributions of the PSMerge and Cyber-
shake workflows on the HPC system (no failure or check-
point). Clearly, the execution time variation of PSMerge is
much larger than that of Cybershake. As a result, Prob
obtains the shortest makespan result among all compared
algorithms for PSMerge, as shown in Fig. 17. Specifically, it
reduces the average makespan by 10, 11 and 23 percent
compared to ProbNP, ProbNF and Young’s formula, respec-
tively, for PSMerge. This again demonstrates the impor-
tance of considering all system dynamic factors in resource
optimization problems for data processing workflows.

7.3 Optimization Efficiency

To study the efficiency of Prob, we compare the optimiza-
tion results and overhead of Prob with those of naive

sampling-based MC method (Section 3.3). We set the sam-
pling size of MC to 10 thousands for the budget-constrained
scheduling and set the size to 100 thousands for the fault tol-
erance optimization. Both use cases are evaluated using
Amazon EC2 and all parameters are set as default if not oth-
erwise specified. We have the following observations.

First, Prob is able to obtain comparable optimization results
as MC for both optimization problems. We calculate the aver-
age difference of the optimized results between Prob andMC.
If the difference is close to 0, it means that Prob obtains simi-
larly good optimization results as MC. For the two optimiza-
tion problems, the differences are 0.3 and 2.2 percent,
respectively, which demonstrates the effectiveness of Prob.
We can have the same observation by looking at the distribu-
tions of the optimization results obtained by Prob and MC.
The result distributions of the two algorithms are almost iden-
tical, due to the fact that all optimizations in Prob can theoreti-
cally guarantee the input probability distributionsmaintained
the same.

Second, the optimization overhead of Prob is much lower
than that of MC. Table 3 summarizes the optimization over-
head of Prob and the average speedup over MC. Overall,
the overhead of Prob is within seconds for the budget-con-
strained scheduling and within minutes for the fault toler-
ance optimization, which is considerably low with the large
sizes of workflows and high complexity of optimization
problems. The overhead of Prob for the fault tolerance prob-
lem is larger than that of the budget-constrained schedul-
ing, as the probabilistic optimization has to deal with two
types of dynamics at the same time for the fault tolerance
problem. In the following, we take a closer look at our prun-
ing techniques to evaluate their individual effectiveness on
reducing the overhead of Prob.

With the pre-processing operations, the number of paths
enumerated in a workflow can be greatly reduced. For
example, the pre-processing operation reduces the number
of paths from 219,452 to one for the Montage workflow. The

Fig. 14. Normalized optimization results for the fault tolerance problem
on Amazon EC2 when the checkpoint overhead is 2s and recovery over-
head is 10s.

Fig. 15. (a) PSMerge workflow structure and (b) the I/O performance var-
iation of the HPC system deployed on Grid’5000.

Fig. 16. Normalized execution time distributions of Cybershake and
PSMerge workflows on HPC system.

Fig. 17. Normalized optimization results for the fault tolerance problem
on HPC system.
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workflow-specific optimizations can reduce the path distri-
bution evaluation overhead by up to 96 percent. The task
bundling and clustering techniques have the benefit of not
only reducing the overhead of Prob but also increasing the
cost-efficiency of cloud instances. For example, with the
same solution optimized by Prob for the budget-constrained
scheduling problem, the expected monetary cost of Mon-
tage on Amazon EC2 between with and without workflow-
specific optimizations differ by 18 percent. Finally, with our
partial solution evaluation pruning, we reduce the solution
searching overhead by up to 78 percent for budget-con-
strained scheduling problem.

7.4 Summary

With the above experiments using two resource provisioning
use cases on real clouds,we have the following observations.

First, system dynamics have become the norm rather
than the exception in large-scale systems such as clouds and
shared clusters. Compared to existing static algorithms
which obtain poor or even infeasible solutions, our probabi-
listic approach can greatly improve the optimization effec-
tiveness for resource provisioning problems of workflows
considering system dynamics.

Second, there can be more than one dynamic factors
causing system variations. To obtain good results, we have
to consider all dynamic factors when optimizing resource
provisioning problems. Prob provides an easy to implement
approach for such complicated problems and our experi-
ments have shown good optimization results when facing
both system performance variations and failure variations.

Third, the probabilistic approach involves time-consuming
distribution-related computations. Experiments have shown
that the pruning techniques of Prob can greatly reduce the
overhead of probabilistic optimizations.

8 RELATED WORK

We introduce related work of this paper from the following
directions, including workflow optimization problems in
the cloud, dynamic cloud environment and existing optimi-
zation approaches for improving the efficiency of probabi-
listic methods.

8.1 Workflow Optimizations in the Cloud

Performance and cost optimizations for data-centric work-
flows in the cloud have been studied by a number of existing
work [3], [4], [5], [35], [36], [37]. Mao et al. [3] proposed an
auto-scaling method which maximize the performance of
workflows in the cloud under budget constraints. Abrishami
et al. [35] proposed methods based on partial critical paths
to minimize the workflow execution cost while meeting a

deadline. Malawski et al. [5] propose to optimize for work-
flow ensembles under both budget and deadline constraints.
Kllapi et al. [4] proposed a generic optimizer for both con-
strained and skyline optimization problems of dataflows in
the cloud. Some studies focuse on workflow optimization
problems in larger scale, such as multi-clouds and geo-dis-
tributed clouds [38], [39], [40], [41]. Diaz-Montes et al. [38]
proposed a framework to support different scheduling poli-
cies for data-intensive workflows in multi-clouds. Pu et al.
[39] designed a system to optimize the latency of big data ana-
lytics in geo-distributed data centers. Kloudas et al. [40] con-
sidered how to reduce the cross-DC data transfer for wide
area big data analytics. The above mentioned studies show
that performance is indeed an important optimization goal
for various workflow optimization problems. However, most
of these studies have not considered the impact of cloud
dynamics to the optimization effectiveness.

Reliability is another important concern for large-scale
data analytics in the cloud and checkpoint/restart is a
widely used mechanism to achieve fault-tolerance for such
applications. Sheng Di et al. [6] proposed a new formula to
calculate the optimal number of checkpoints for the large-
scale cloud environment and Subhendu et al. [42] intro-
duced live migration on this basis to further reduce the time
waste caused by failures. However, these studies consid-
ered only part of the cloud dynamic factors (i.e., failure
dynamics) and may lead to suboptimal optimization results
as demonstrated by our experiments.

8.2 Dynamic Cloud Environment

Many existing work have studied the performance dynamics
in the cloud. Previous studies have demonstrated significant
variances on the cloud performance [7], [43]. The distribution
model (histogram) has also been adopted [7] to measure and
analyze the cloud performance variances. Another work [43]
proposed to exploit I/O re-routing to reduce process competi-
tion on I/O resources and hence reduce I/O performance var-
iations. However, as shown by their work, performance
variability can be reduced but not fully mitigated. In this
paper, we focus on utilizing the cloud performance distribu-
tions to improve the optimization effectiveness for data proc-
essingworkflows in the cloud.

Recently, there are some studies proposing various meth-
ods such as dynamic scheduling and stochastic modeling to
address the resource provisioning problem considering cloud
dynamics (or uncertainties) [44]. Dynamic scheduling has
been used to make adaptive decisions for resource allocation
in the cloud considering performance variations [5], [12].
Compared to offline optimization methods, they can make
better performance estimations at runtime using either simple
history-based estimation [5] or more sophisticated model-
based estimation [12]. However, as we have observed, cloud
performances can vary abruptly and it is hard to have accu-
rate estimation on their exact values. A number of studies
have adopted the stochastic programmingmodel for the prob-
lem. The optimization variables are represented as random
variables and their probability distributions can be estimated
from historical data [13], [14]. Those probability distributions
are used in stochastic analysis to make resource allocation
decisionswhile providing quantile-basedQoS guarantees [14].

TABLE 3
Optimization overhead (sec) of Prob and the average speedup
over MC for the budget-constrained scheduling problem (P1)

and fault tolerance optimization problem (P2).

Montage CyberShake Q1 Q9 BigDataSort speedup

P1 0.79 0.82 1.32 2.04 0.1 482x

P2 48 223 79 424 63 80x
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This kind of methods require remodeling the resource provi-
sioning problems using stochastic models, which can some-
times be quite complicated.

Probabilistic approaches are recently adopted [45], [46] for
resource provisioning at offline time while still mitigating the
impact of cloud dynamics to resource provisioning results. For
example, UP [47] is a probabilistic method which studies the
uncertainty propogation in data processing systems to achieve
bounded accuracy when processing uncertain data. However,
their method assumes given probability distribution while
Probdoesnot have any assumption on the distribution of cloud
dynamics. 3Sigma [48] is another distribution-based method
proposed for cluster scheduling considering runtime uncer-
tainty. Different from Prob, their work does not consider the
uncertainty propagation in complicated job structures such
as workflows. Dyna is a probabilistic optimization frame-
work [46] which optimizes the monetary cost for scientific
workflows in the cloud using spot instances. However, their
work have a large overhead due to the costly calculations on
probability distributions. The pruning techniques proposed in
Prob can greatly reduce the optimization overhead and make
the utilization of probabilistic distributions for workflow opti-
mizations more practical. This paper extends our previously
published work [22] by adding a new resource provisioning
problem of workflows, which requires handling more compli-
cated and correlated cloud dynamics factors. With this exten-
sion, we show that taming system dynamics on resource
optimization for data processing workflows is an important
yet challenging problem.Prob provides a general, effective and
efficient solution to the problem.

8.3 Efficient Probabilistic Methods

The probabilistic distribution model has been adopted in dif-
ferent research domains to improve the optimization results in
dynamic environments. In database field, efficiently evaluat-
ing probabilistic queries over imprecise data is a hot research
topic. Many pruning mechanisms have been proposed to
improve the efficiencies of answering probabilistic queries
such as top-k [49], aggregations and nearest neighbor [50] on
probabilistic databases [51]. In business workflows, the proba-
bilistic model and stochastic models have been adopted to
describe the QoS, such as availability and reliability, of Web
services [14]. Different from those studies, our probabilistic
optimization techniques are specially designed for the perfor-
mance optimizations of data processingworkflows.

9 CONCLUSION

In this paper, we propose a probabilistic optimizationmethod
named Prob for the workflow performance optimizations
considering system variations. Specifically, we discuss the
resource provisioning problem of workflows in the cloud as
an example. We model the cloud dynamics as time-dependent
random variables and take their probability distributions as
optimization input to the resource provisioning problems of
workflows. Thus, the probabilistic optimizations can have a
better view of system performance and generate more accu-
rate optimization results. The main challenge of Prob is the
large computation overhead due to complex workflow struc-
tures and the large number of probability calculations. To
address this challenge, we propose three pruning techniques

to simplify workflow structure and reduce the probability
evaluation overhead. We implement our techniques in a run-
time library,which allows users to incorporate efficient proba-
bilistic optimization into their existing resource provisioning
methods. Experiments on two common resource provisioning
problems show that probabilistic solutions can improve the
performance by up to 65 percent compared to the state-of-the-
art static algorithms, and our pruning techniques can greatly
reduce the overhead of probabilistic solutions.
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